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Abstract

We analyze the potential for inferring spatially resolved surface fluxes from atmospheric
tracer observations within the mixed layer, such as from monitoring towers, using a re-
ceptor oriented transport model (Stochastic Time-Inverted Lagrangian Transport model
— STILT) coupled to a simple biosphere in which CO, fluxes are represented as func-
tional responses to environmental drivers (radiation and temperature). Transport and
biospheric fluxes are coupled on a dynamic grid using a polar projection with high
horizontal resolution (~20km) in near field, and low resolution far away (as coarse as
2000 km), reducing the number of surface pixels without significant loss of information.
To test the system, and to evaluate the errors associated with the retrieval of fluxes
from atmospheric observations, a pseudo data experiment was performed. A large
number of realizations of measurements (pseudo data) and a priori fluxes were gen-
erated, and for each case spatially resolved fluxes were retrieved. Results indicate
strong potential for high resolution retrievals based on a network of tall towers, subject
to the requirement of correctly specifying the a priori uncertainty covariance, especially
the off diagonal elements that control spatial correlations. False assumptions about the
degree to which the uncertainties in the a priori fluxes are spatially correlated may lead
to a strong underestimation of uncertainties in the retrieved fluxes, or, equivalently,
to biased retrievals. The framework presented here, however, allows a conservative
choice of the off diagonal elements that avoids biasing the retrievals.

1. Introduction

Climate predictions are currently hampered by the inability to characterize feedback
between a changing climate and sources and sinks of greenhouse gases such as CO,
and methane (Friedlingstein et al., 2003). A prerequisite for development of a pre-
dictive capability is the understanding of current trace gas budgets. At hemispheric
scales, a major source of information has been data from the CO, observing network
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(e.g. GLOBALVIEW-CO,, 2002), which are used by atmospheric transport models in
inversions to derive flux estimates. However, at the smaller scales of continents, coun-
tries or ecosystems, at which climate anomalies (droughts, anomalies in rainfall, tem-
perature, etc.) as well as human intervention (land use change) influence biosphere-
atmosphere exchange, large uncertainties remain (IPCC, 2001; Schimel et al., 2001).
Regional scale budgets have recently become a research focus (Wofsy and Harriss,
2002); they are a requirement for any carbon trading, such as might be implemented
under international agreements like the Kyoto protocol.

Continental scale inversions based on global observational networks provide only
a weak constraint on fluxes, due to the remoteness of such observations from the
land (Gloor et al., 2000). In principle, information about regional scale biosphere-
atmosphere exchange is contained in mixing ratios of CO, over the continent, in prox-
imity of biospheric activity. Gerbig et al. (2003a) (in the following referred to as G03a)
demonstrated large biospheric signals in atmospheric profiles of CO, over the North
American continent, with a significant spatial variability that closely reflects spatial vari-
ability in surface fluxes (Gerbig et al., 2003b, in the following referred to as GO3b).

Long-term observations of CO, in the continental boundary layer with sufficient ac-
curacy are available from tall towers (Bakwin et al., 1995) as well as from a number of
CO, eddy flux towers (Fig. 1), and the spatial density of this network of sites is increas-
ing (Wofsy and Harriss, 2002). These data are closely related to regional fluxes of
CO,, especially when they can be compared to observations from above the planetary
boundary layer (PBL) and/or remote stations at similar latitude (Fig. 1, compare middle
and lower panels). Unfortunately, the large spatial as well as temporal variability of the
fluxes limits the usefulness of these data in current models used for inversions, and
interpretation of the observations requires quantitative understanding of transport pro-
cesses affecting the PBL. Most inversions so far have used a representation of surface
fluxes where surface grid elements are aggregated to large regions (typically 10—-20
globally) (Gurney and al., 2002), and PBL processes are not accurately represented,;
these inversions are subject to additional representation errors (the so-called “aggre-
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gation error”; Kaminski et al., 2001). GO3b showed that changes in CO, concentrations
over the continent are directly related to spatial variations of surface fluxes in the near
field of the measurement locations. To quantitatively extract the information, aggrega-
tion to coarse spatial scales should be avoided. Otherwise the aggregation error has
to be accounted for in the inversion, and (as G03b argued) this might involve not just a
random error but also a bias term.

Bayesian inversion methods require as inputs an a priori estimate of the state (in this
case the surface fluxes) and an associated error covariance matrix that characterizes
the uncertainties in the estimate (Rodgers, 2000). When retrieving flux information
at high spatial resolution, special attention has to be given to this covariance matrix,
most importantly the off-diagonal elements. This can be illustrated with two extremes:
a) Assuming no correlation between different locations (i.e. zero off-diagonal elements)
implies very small a priori uncertainties on large scales, since uncorrelated errors are

reduced by factor 1/N‘1/2, with N as the number of gridcells aggregated. For a large
number of independent gridcells (large degrees of freedom) the atmospheric inversion
will be less successful in constraining fluxes; in fact the problem becomes underde-
termined (Peylin et al., 2001); b) assuming perfect correlation between different loca-
tions means there is only one degree of freedom (a bias) to be constrained for each
large scale aggregate by the inversion. Large scale aggregation (such as used in the
TransCom studies (Gurney and al., 2002) is equivalent to the assumption of perfect
uncertainty covariance within each aggregate. But, as illustrated in Fig. 1, data from
continental sites are sensitive to regional fluxes, and this approach would render these
data useless in the inversion. A realistic covariance of the prior uncertainty will fall
between these two extremes.

A direct way to derive the uncertainty covariance would be to compare the prior
flux estimate to measurements at various locations, and to investigate the spatial and
temporal correlation of the residuals (differences between measurement and flux esti-
mate). However, this requires a dense network of flux measurement sites in a spatial
arrangement that allows for spatial statistics, e.g. multiple replica within similar ecosys-
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tems at various distances. Lacking observational constraints for the prior uncertainty
covariance, one has to make assumptions about the spatial correlations, e.g. in the
form of a correlation length scale, for example, adopting the spatial statistics of dif-
ferences between different biospheric models (Rodenbeck et al., 2003). Alternatively,
correlation length scales have been estimated by optimization of the model-data sys-
tem using a geostatistical approach (Michalak et al., 2004). Both approaches give only
a surrogate for true uncertainties and their spatial covariances. In a recent study on
regional scale inversions (Peylin et al., 2005) the assumed correlation length scale was
varied between 500 and 2000 km, yielding significantly different flux distributions.

To investigate the inference of CO, flux from measurements of CO, over the con-
tinent (e.g. the data in Fig. 1), and especially the dependence on the assumed error
characteristic, we set up the ROAM (receptor-oriented atmospheric model) framework
described in GO3b to retrieve fluxes at high spatial resolution. ROAM couples a high
resolution transport model (the Stochastic Time-Inverted Lagrangian Transport model,
STILT, Lin et al., 2003) to a simple biosphere flux model intended to capture the tem-
poral and spatial variance over the continent. The flux model used here, denoted the
“Greatly Simplified Biosphere” (GSB), parameterizes net ecosystem exchange as a re-
sponse to radiation and temperature, similar to GO3b, except that here we solve for
temperature and light sensitivities directly rather than for scaling factors of respiration
fluxes and uptake. A further, but more important difference is that we avoid spatial
aggregation errors by using spatially varying sensitivities at a spatial resolution that
degrades with increasing distance from the measurement location. Note that the ap-
proach chosen here differs from the above mentioned studies (Michalak et al., 2004;
Peylin et al., 2005; Rodenbeck et al., 2003) in that not spatially resolved fluxes are op-
timized, but rather their spatially resolved sensitivities to the dominant environmental
drivers (radiation and temperature) that can after optimization be turned into fluxes.

As a step towards high-resolution retrievals of surface fluxes, we apply this frame-
work to pseudo data generated for the Harvard Forest Environmental Monitoring Site
(Barford et al., 2001; Wofsy et al., 1993). The advantage in using pseudo data rather
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than real data is that we know the truth in the “pseudo-world”, so we can control ex-
actly what information we have in terms of the a priori fluxes, and we can estimate
how much additional information is provided by the mixing ratio measurements. The
two main questions addressed in this paper are: 1) what can we learn, assuming we
know prior uncertainty covariance, and 2) what information do we lose, in case we have
imperfect knowledge about the prior uncertainty covariance.

In Sect. 2, we present the model linking spatially varying biospheric parameters with
CO, mixing ratios. Section 3 describes the setup of the numerical experiment, includ-
ing the generation of pseudo data and a priori parameter fields, and retrieval of opti-
mized parameters. Results are presented in Sect. 4, with the achievable reduction in
uncertainty of area averaged fluxes, the spatial resolution of retrievals, and the impact
of false assumptions about the length scales of the a priori uncertainty covariance.

2. Modeling framework
2.1. Linking observational constraints to flux model parameters

We use the ROAM (receptor oriented atmospheric model) framework described in
GO03b and by Lin et al. (2004), with STILT as a transport model coupled to surface
fluxes on high spatial resolution. Following the notation in Lin et al. (2004), the mixing
ratio at the receptor C(x,, t,) (with fixed location x,) can be written as a sum of signals
due to surface fluxes F (x;, y;, t ;) (flux at location (x;, y;) and time ¢,,) and contributions
from model boundaries C(x;,y;,2, to):

C'(Xrll‘r)= z f(Xr:trlxi)yj,tm)'F(Xizy/"tm)"' z /(ertrIX/'Y/'xzkfto)'C(X/:y/‘)Zk:to)(1)
ij,m i.j.k

contribution from sources/sinks contribution from advection of upstream tracer field

J

Here f(x,, t.|x;, y;, t) is the footprint (also called surface influence), that relates surface
fluxes at x;,y;, and time ¢, to mixing ratios at receptors located at x, at time ¢,, and
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Ix..t|x;.y),2¢, t) is the influence (weighting) of concentrations at the boundary. The
summations in principle cover the globe, but in practice the domain is much smaller,
limited to surface locations and times where f is finite and similarly for /. To calcu-
late footprint and influence, STILT was driven by assimilated meteorological data from
EDAS (ETA Data Assimilation System) (Rogers et al., 1995) supplemented by GDAS
(Global Data Assimilation System) (details see G03b), and run for 15 days backwards
in time. The transport simulation was done for the measurement location at Harvard
Forest every 3 h throughout August 2002, resulting in N=248 runs.

Equation (1) can be written using vector notation, with the mixing ratio at the receptor
as vector C of dimension N containing the whole time-series (N discrete points in time

t):

C = fF + IC, + € . (2)
~~ ~~ - ~~
observations  contribution from surface fluxes  ontripution from boundary error

Now surface fluxes are presented as modeled fluxes F, a vector of length
Ne=N,"N,*N; containing fluxes at all surface locations and at all times prior to the
measurement time, f is a matrix of footprint elements with dimension N * Nz, and I,
the influence matrix relates mixing ratios from the lateral model boundaries C, to mix-
ing ratios at the receptor. The error term & describes differences between measured
and modeled values due to uncertainties in transport (f, 1), measurements (C), and
boundary fields (C}).

The general idea of the inversion is that information contained in observations can be
translated into information about fluxes. Here our focus is on biospheric fluxes vecF ;s
and its dependence on environmental drivers such as light (radiative flux) and tempera-
ture. Therefore we write the surface fluxes in Eq. (2) as a sum of biosphere-atmosphere
exchange fluxes Fy;,s and fluxes from combustion processes F ., (fossil fuel and
biomass burning emissions). The biospheric flux representation was simulated using
the GSB, with a light and temperature response keyed to vegetation class according to
the IGBP vegetation, and with sensitivities derived from fitting to FLUXNET data (Bal-
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docchi and al., 2001) (details see G03b). Here we use a further simplification by only
taking into account linear responses to temperature and radiation. Thus the biospheric
flux for a given location / and vegetation type v at time ¢ can be written as the sum of
gross ecosystem exchange and respiration flux:

Fb/os,/,t,v = GEE/,t,v + R/,t,v =Vvc),y (’IHad,/,vSWRF/,t + ’ITemp,/,v(T/,t - TO)) - (3)

Here vc, , is the relative coverage of the given vegetation type in the gridcell at loca-
tion /, Agag sy @Nd A7gpp,,, @re the radiation and temperature sensitivities (see also
Table 1), SWRF, ; is the shortwave radiative flux, and T, ; is the temperature. In vector
notation this can be written for all times and locations as

Fb/'os = P4, (3a)

where the biospheric flux is written as the product of the parameters vector A (the state
vector), that combines the light and temperature sensitivities for different vegetation
types at the different flux locations, and matrix @, that contains products of relative veg-
etation cover and temperature or radiation in each grid element at the different times.
As in GO3b, temperature and shortwave flux are taken from the assimilated meteoro-
logical fields used to drive STILT. Rearranging Eq. (2) to separate out the biospheric
parameters gives

y=Ki+eg, (4)

with y=C-IC,—fF .,,,,», as the observational constraint on biospheric parameters (simi-
lar to ACO, 4 in GO3b), K=fD as the Jacobian (sensitivities of measurements y with
respect to biospheric parameters 4). Note that the error term g, differs from the error
termin Eq. (1) in that it also includes errors due to uncertainties in the contribution from
combustion fluxes f F,,,, and in the representation of the biospheric fluxes.

By referring to y=C-C,—fF ., as an observational constraint, although the only
observable is the mixing ratio C, we made two simplifying assumptions:
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1) The contribution from the lateral boundary of the domain IC,, is assumed to be
known. Since here we are using simulated measurements rather than real world
data, this is not really an assumption. However, in the real world contributions
from the boundary can be estimated from a climatological model of background
mixing ratios (GO3b) or by filtering the measured timeseries itself (Wang, 2003);
other possibilities include coupling to a global model or using frequent aircraft
data (cf. Fig. 1). In general there will be an estimate of this contribution with an
uncertainty that has to be taken into account.

2) Signals from any surface fluxes other than biospheric fluxes, such as fossil fuel
emissions of CO,, are assumed to be known. Again, in a world with simulated
measurements this is not an issue, however, in the real world this means know-
ing combustion fluxes F,,, or the signals fF,,, on small spatial scales well
enough, i.e. significantly better than biospheric fluxes or signals. GO3b used
a combination of measured CO and emission ratios to estimate fossil fuel and
biomass burning signals, but considerable uncertainty is associated with such es-
timates. Future inversions will need to simultaneously solve for combustion fluxes
as well as biospheric parameters, and use of multiple tracers (e.g. CO) may help
this task by adding constraints. Here we assume that there are uncertainties
associated with fossil fuel and biomass burning emissions that contribute to the
overall uncertainty g,.

Given a set of a priori parameter estimates 4,,;,, with uncertainty covariance S, ./,
and following the Bayesian synthesis inversion (a good description of atmospheric in-
verse methods is given e.g. in Rodgers, 2000), we estimate the state vector A as:

prior prior

i= (KTS;1 K+S )_1 (KTs;1y +87" Ap,,-o,) (5)

with error covariance S, for the measurement error £,. Equation (5) improves the (im-
perfect) prior knowledge about the parameters (4,,;,,, Sp/ior) Dy combining it with the
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constraint provided by atmospheric measurements (y,S,) and coupled atmospheric
transport and biospheric model K. The a posteriori uncertainty for A is given by

-1
& -1 -1
8= (K's;'K+s,),) . (6)
Following Rodgers (2000), we can also write for the posterior estimate of the state
vector (Eq. 5):

'i - 'lpr/or = A1 - 'lprior) + Gygy (7)

-1
with the so called gain matrix G, = (KTS;1 K+S;;,.0r> KTS;1 and the averaging kernel

matrix A=G K. In Eq. (7) we can interpret a given column of A as the response of the
retrieval to a perturbation of the corresponding element of the state vector. This will be
used in Sect. 4.2.

2.2. Reduction in dimension of state space

The simplicity of Eq. (4) hides the complexity and magnitude of the problem: the rep-
resentation links light and temperature sensitivities A of biospheric fluxes (the state
vector) from different vegetation types at all times and all surface flux locations that
influence the measurements to an observable constraint y. For example, for a spatial
domain that roughly covers North America at a resolution of 20 km there are 120 000
different gridcells, and about 1/4 of these cells are covered by vegetation. For two
vegetation types and two sensitivities (to light and temperature), each of these 30 000
vegetated cells requires 4 degrees of freedom at any given time; and if one is interested
in e.g. a one-month duration and allows the sensitivities to vary on daily timescales, the
required number of parameters is about 3.6 million. A retrieval on a grid with such a
number of unknowns is not feasible — e.g., the prior uncertainty covariance matrix itself
will have more than 10" elements, and plainly there is insufficient information in the
data to constrain so many parameters.
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Therefore it is necessary to reduce the state space dimension significantly (both
spatially and temporally), ideally without losing any information. We know that for a
given measurement location the spatial differences in surface fluxes at some far away
small surface area does not affect local mixing ratios and need not be (indeed, cannot
be) accounted for separately from surrounding surface elements. The reason for this is
that the size of the footprint f(x,, ¢,|x, t) for a measurement made at location x, and time
t, increases with elapsed time ¢,—t due to atmospheric mixing, and the magnitude of
the elements of f correspondingly decrease, as illustrated in Fig. 2. The footprint-area
at 3 days prior (=72 h) is more than 10 times larger than the footprint-area at 1 day prior
to arrival. Figure 2 also illustrates our approach to enlarge the grid size with increasing
footprint area, “dynamic grid resolution” as described in GO3b. This dynamic resolution
was necessary due to the limited number of particles representing the airmass. Results
using high resolution footprints throughout (20 km up to 15 days, with 4000 particles)
rather than dynamically adjusted resolution (also with 100 particles) showed only minor
differences (rms error ~3% of the biosphere signal, or a factor of 4 smaller than the
uncertainty due to the limited number of 100 particles representing the airmass, see
G03b). From this we can conclude that spatial variations in surface fluxes on scales
smaller than the resolved scale at a given time (with dynamic grid resolution) have no
significant impact on mixing ratios at the receptor.

Here we need a grid with a resolution that decreases with distance from the receptor,
and that does not change with time, thus defining an appropriate state space for a
given receptor. Hence we use a simple polar projection, with 32 sectors and 30 radial
discs to represent the footprints. The grid was chosen so that the area for each grid-
cell as a function of distance from the receptor r behaves similar to the dynamic grid
(Fig. 3), with a grid cell area increasing proportional to r?, increasing the radial step-
size proportional to r, starting with a minimum step-size of 20 km. Since the dynamic
grid resolution changes (in time) for a given r, the 10%ile (50%ile) of the gridcell area
is shown in Fig. 3, i.e. 10% (50%) of the influence was represented with a higher
resolution, respectively. The grid-cell area of the chosen polar grid representation falls
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between the 10%ile and the 50%ile curve of the dynamic grid, i.e. has appropriate
resolution in far more than 50%, but not quite 90% of the time. As an example the
footprints shown in Fig. 2 are recalculated in polar coordinates, and than transformed
back to Cartesian coordinates for visualization (Fig. 4). The relevant spatial structure
in the footprint is well represented on the polar coordinates.

The parameters A are allowed to vary spatially, with resolution given by the polar
grid, reducing the size of the state vector A by a factor of about 60 compared to the
Cartesian grid (Lat-Lon), without significant loss of information. Since we are here
interested primarily in the spatial scales, we made the simplifying assumption that the
parameters A are constant over one month, reducing the state space dimension by
another factor of 30 compared to daily varying parameters. This choice thus makes a
retrieval of the remaining 2048 elements of A feasible.

3. Experiment setup

The experiment consists of the following steps:
1) Pseudo data are generated from a set of parameter fields (the “truth”, Sect. 3.1).

2) A number of a priori parameter fields are generated, with spatial covariance de-
caying with different decorrelation length scales (and encapsulated in the uncer-
tainty covariance matrix) (Sect. 3.2).

3) A posteriori parameter fields are retrieved based on the prior and an assumed
prior uncertainty covariance which may differ in its decorrelation length scale from
the true uncertainty covariance of the prior (Sect.3.3).

4) Fluxes based on the retrieved and the true parameter fields are calculated for
different scales of spatial averaging (Sect. 3.4).
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3.1. Generation of pseudo data

Pseudo data for biospheric signals y; are calculated after Eq. (2) from “true” parame-
ter fields A; that are assumed to be spatially constant for simplicity (spatially uniform
light and temperature sensitivity for forests and croplands after Table 1). Even though
the parameters fields are spatially constant, strong gradients in surface fluxes result
from the different responses for different vegetation types, and from gradients in the
environmental drivers temperature and radiation. A realization of the error term £, was
created based on a Gaussian sample with standard deviation of 2ppm. This uncer-
tainty is meant to account for (a) uncertainty in the measurements themselves (less
than 0.5ppm at Harvard Forest), and errors in the modeling framework such as (b)
inability to reproduce eddies in the atmosphere (ranging from 0.2 to 2 ppm — G03a),
(c) uncertainties in fossil fuel signals (order of ppm — G03a), (d) uncertainties in the
tracer boundary fields (~1 ppm after G03a), and (e) errors in the biospheric model for-
mulation (true fluxes are affected by factors other than temperature and radiation). The
2 ppm assumed uncertainty is a lower limit, or the information content of the measure-
ments derived here represents an upper bound, since uncertainties related to imperfect
transport are not included. The transport error for the current framework is on the or-
der of 2 ppm for the Harvard Forest site, following methods discussed in Lin and Gerbig
(2005); however, we did not include this since it can be assumed that in future models
this will improve.

The simulated CO, signals using values for the biosphere flux parameters from G0O3b
(not including the measurement error) are shown in Fig. 5, together with observed CO,.
The simulations have a lot of similarity with the measurements, with a pronounced diur-
nal and synoptic variability. Diurnal maxima are not well represented due to the inability
of the model to reproduce a shallow nocturnal boundary layer: the modeled boundary
layer height is often too high, causing the footprint to cover a larger area (due to larger
wind speeds in the deeper layer) and the biospheric signal from nocturnal respiration
to be too small (due to the vertical dilution in a deeper layer). This underestimation
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of respiration signals in the pseudo data means that processes dominating the day-
and night-time fluxes (assimilation and respiration) will not be as separable as in the
real world. Also shown in Fig. 5 are the simulated CO, signals using the Cartesian
grid, nearly indistinguishable from the version based on the polar grid (standard devia-
tion of differences 0.6 ppm), supporting our claim that no significant loss of information
occurred in the regridding from Cartesian to Polar coordinates.

3.2. Generation of a priori parameter fields

A priori parameter fields are created by adding noise to the “true” parameter values,
with the same variance as the prior uncertainty (Table 1), and with a variety of decor-
relation length scales /;,,, ranging from 10 to 15000 km. The spatial covariance was
assumed to decay exponentially with distance. Thus a covariance matrix was con-
structed with diagonal elements as prior uncertainties (from G03b), and off-diagonal
elements decaying with exp(-d//;,,.), with d as the distance between the grid cells.
Parameter fields were then generated as a realization of the noise using spectral de-
composition of this covariance matrix (see e.g. Cressie, 1993).

3.3. Retrieval of parameter fields

Posterior fluxes and associated uncertainties are retrieved from the pseudo data and
the prior parameter fields following Eq. (5). As mentioned before, the decorrelation
length scale for the assumed prior error (/) can be different from the one used to create
the prior parameter field (/;,,.), since in the real world this length scale is not necessar-
ily known. Also, the aim of this work is to test how results depend on this knowledge.
Therefore fluxes are retrieved for 9*9 different combinations of assumed prior decorre-
lation scale / and true decorrelation scale /;,,,. To allow statistical sampling of these
retrievals, 500 different realizations of prior parameter fields were used, resulting in a
total number of 40 500 retrievals.
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3.4. Area averaging

Results are presented in terms of retrieved fluxes and their uncertainties for averages
over areas of different sizes ranging from local to continental scales. Ideally, flux av-
eraging should be done over areas where the footprint is strongest, such as in the
dominant wind direction upwind of the receptor (see Fig. 6, top). However, for simplic-
ity we use circular areas centered at the Harvard Forest site with radii of 100, 514 and
1849 km. In fact, the footprint distribution seems to coincide with the land/ocean distri-
bution, with low influence from the ocean. Given the focus on fluxes from the terrestrial
biosphere, the simple circular averaging seems appropriate. To transform the state
vector A (spatially resolved light and temperature sensitivities for forests and cropland)
into area and time averaged fluxes, we define the aggregation operator W:

F =WF = WA . (8)

Here F is the area-averaged flux (scalar) on the polar grid, F is the spatially resolved
flux, and @ contains the time averaged radiation and temperature distribution to convert
the state vector into fluxes as defined in Sect. 2.1. The spatial distribution of vegetation
type (forest and crop) and an example of the drivers (radiation and temperature) for
a specific time are also given in Fig. 6. The error covariance matrices S, have to be
transformed accordingly (Rodgers, 2000):

SF = WSFWt = WCDSA/ltWt (9)

S¢ is the covariance matrix for the spatially resolved flux, and S is the variance of the
area-averaged flux (a scalar).

4. Results

The results of the numerical experiment are presented in the following sections related
to the two main questions:
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e what can we learn, assuming we know prior uncertainty covariance (i.e. with
I=ltrye), and

e what information can we lose, in case we don’t exactly know the prior uncertainty
covariance (i.e. with /#/;,,e).

The first question is addressed in Sects. 4.1 and 4.2, while Sect. 4.3 investigates the
extent to which we retrieve false information by assuming the wrong a priori uncertainty
covariance length scale.

4.1. Uncertainty reduction

By combining the prior information about the state vector A with the additional constraint
posed by the pseudo measurements, the uncertainty in the retrieved state vector A, ex-
pressed by the matrix él, is expected to be reduced compared to the prior uncertainty
(matrix ép,,-or. The reduction of the uncertainty for the individual elements of A can
be expressed as 1-0,,,,/0p0sterior» Where the o’s are the square root of the diagonal
elements of the corresponding covariance matrices. The uncertainty reductions for the
different elements of the state vector are shown in Fig. 7. Most of the information con-
tained in the measurement relates to the near field of measurement location, and the
information content decays with increasing distance. This is related to the behavior of
the footprint, which decays strongly with increasing distance from the receptor. Res-
piration affects concentrations most directly at night, when advection is weak, hence
the information about R is spatially more concentrated than about GEE. Since there is
no cropland vegetation in the near field of Harvard Forest (see middle right graph of
Fig. 6), there is no local uncertainty reduction for the corresponding light and tempera-
ture sensitivity. The nearest significant cropland influence on the mixing ratios is in the
Midwest, for which there is a reduction in uncertainty of about 20% and 10% for the
light and temperature sensitivity, respectively.

The resulting reduction of uncertainty for fluxes is shown in Fig. 8 for a range of prior
uncertainty correlation scales /;,,, (with /=/;,,,). It is obvious that the spatial scale of
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retrieved information directly reflects the prior uncertainty correlation scale. For short /
only a small uncertainty reduction is attained in the very near field, while for large /
an uncertainty reduction of nearly 100% is obtained for a large area surrounding the
measurement location. This strong dependence on the a priori uncertainty covariance
shows that plots of uncertainty reduction are not very useful indicators of the potential
constraint of an observational site on surface fluxes, that is without making a disclaimer
about the assumed a priori uncertainty covariance length scale.

Uncertainties in fluxes for the different averaging scales (areas with different radii
around Harvard forest) are shown in Fig. 9. The prior uncertainty becomes smaller
with decreasing /, as expected for an average of more and more statistically uncorre-
lated regions. As / increases beyond the averaging scale for the flux (indicated by the
arrows), the resulting prior uncertainty for the averaged flux starts saturating (e.g. for
516 km averaging scale at about 1.5 umol/mz/s). The reason for this saturation is that
for / large compared to the averaging scale there is only a single degree of freedom in
each parameter, independent of the exact size of /.

As expected, the posterior uncertainties are significantly smaller than the a priori
uncertainties, with an uncertainty reduction exceeding 50% for prior uncertainty corre-
lation scales / larger than 300 km. The behavior of prior uncertainty for area averaged
fluxes with / (decreasing with decreasing /) is partly compensated by the opposite be-
havior of the uncertainty reduction. Thus the resulting posterior uncertainty for area
averaged fluxes shows a maximum near the averaging scale. In different words, for
small / we already have a lot of prior knowledge about the flux (many independent er-
rors in small regions), and the information from the atmosphere doesn’t help that much,
while for large / there are effectively only a few degrees of freedom that can easily be
constrained by atmospheric observations.

4.2. Averaging kernel: How sharply can a tower see parameter fields?

Here we investigate how local changes in the parameter field can be resolved with
the retrieval based on the combination of CO, measurements and a set of a priori
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parameters. As introduced at the end of Sect. 2.1, a given column of the averaging
kernel matrix A describes the retrieval of a perturbation of the corresponding state
vector element (see Eq. 7). An example for this is shown in Fig. 10, where the light
sensitivity for forest is perturbed at the gridcell located at a distance of 50 km to the
south-west of Harvard Forest. A perturbation of the size of the a priori uncertainty
of the parameter was applied, given by the square root of the corresponding diagonal
element in the prior uncertainty covariance matrix. The map presented in Fig. 10 shows
the corresponding retrieved flux due to the change of light and temperature sensitivity
for forest in the proximity of Harvard Forest, weighted by forest coverage.

Ideally, the Averaging kernel would be a diagonal matrix, and the retrieval would only
show a response at the location of the perturbation. However, the loss of information
due to atmospheric mixing causes the response to be spread out around the exact
location. In addition, the length scale of the a priori uncertainty covariance / also influ-
ences the spreading of the response. The retrieval suggests also a significant change
in temperature sensitivity for a perturbation in the light sensitivity (“cross-talk”), this is
related to the fact that CO, signals caused by respiration (temperature sensitivity) and
by assimilation (light sensitivity) are not completely independent. In fact the retrieved
flux due to cross-talk (top right of Fig. 10) shows a response that varies with distance
from the tower, with maximum values that are even larger than the direct response (top
left of Fig. 10). This related to the much larger posterior uncertainty in the temperature
sensitivity (about a factor 7 when expressed in fluxes). The situation is different for a
perturbation in temperature sensitivity (bottom of Fig. 10): the cross-talk is minimal,
the maximum of the retrieved flux is located correctly, but there is a large flux close to
the tower with opposite sign. In addition there is also some cross-talk between forest
and crop sensitivities (not shown). These results indicate that the method is capable
of retrieving local changes in the parameter field, but not without some aliasing, both
spatially and (as cross-talk) between the temperature and radiation sensitivity.
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4.3. The case of unknown correlation scale for prior uncertainty

The above results refer to the reduction in uncertainty that can be achieved if we know
l+rue» the true prior uncertainty correlation scale. Now we investigate what happens
when it is not known, i.e. when /#/,,,,. Figure 11 shows the ratio of the standard devi-
ation of the 500 flux retrievals (based on different realizations of the a priori parameter
fields for a given /;,,,), to the assumed posterior uncertainty (based on an assumed
prior uncertainty correlation scale /), for an averaging scale of 516 km (radius of the
circular area around Harvard Forest). If this ratio of actual over assumed uncertainty
(i.e. the uncertainty underestimation), is larger than one, a false reduction of uncer-
tainty is the result. For example, if the true scale /;,,, is 100km (the gray curve in
Fig. 11 with the filled circle at 100 km), and the assumed scale / is 10 km, the derived
posterior uncertainty is a factor of 10 too small (value of the curve at 10km). In this
situation the true flux would not fall within the range given by a single retrieval and the
assumed uncertainty estimate, but can only be expected to be within a 10—o range
around the estimate. Similarly, if in the same case (/;,,,=100 km) we assume a scale
/ of 15000 km, the uncertainty is underestimated by a factor of 4. On the other hand,
for a scale /;,,, of 10 km, the uncertainty is overestimated for assumed scales smaller
than about 1000 km. In these cases of uncertainty overestimation the true flux will fall
within the error bars given by the posterior uncertainty, but would be much closer to the
value than indicated by the posterior uncertainty, thus information would be unused.
Experiments with different averaging scales (100 km and 1849 km circle around Har-
vard Forest, not shown) generally show a similar behavior: if the prior uncertainty co-
variance scale /,,,, is shorter than the averaging scale, and if /;,,, is underestimated
(/</tr46), the posterior uncertainty is more and more underestimated. This is related to
the significant underestimation of the prior uncertainty: by assuming a too small decor-
relation scale, the many uncorrelated errors in the prior cancel out as 1/VN, with N as
the number of independent degrees of freedom within the averaging area. Similarly,
if the prior uncertainty covariance scale /;,,, is larger than the averaging scale, and
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if ¢ly,,¢ is Overestimated (/> /,,,,), the posterior uncertainty is also more and more
underestimated. This effect is similar to the aggregation error: a too large correlation
scale in the prior serves as an aggregation of the information into only a few degrees
of freedom (a few large scale bias errors).

5. Discussion and outlook

The above results can be used to address an important question related to regional
carbon budgets: how many observing stations are required for a given accuracy of the
regional budget estimate. A rough approximation for the achievable accuracy of a flux
retrieval based on a network of tall towers can be based on the range of posteriori un-
certainties (0.001-0.023 umoles/mz/s from Fig. 9) for an area of 516 km radius around
each tower: with 10 towers the flux of an area of the size of the contiguous United
States could be determined with an accuracy of 0.14-2.8 Mt C/year (assuming that
the uncertainties are uncorrelated between the different circles around the sites). In
comparison, current global scale inversions achieve a posterior uncertainty for monthly
fluxes of the order of 1 GtC/year for temperate North America (Gurney et al., 2004).
This clearly shows the potential of a network of tall towers, but it also shows that the
usefulness of information from atmospheric trace gas observations depends critically
on what we know a priori about the flux distribution.

Of course a large contribution to the reduction achieved in the posterior uncertainty
is from the assumptions in the prior, e.g. for a very short correlation length scale of
10 km for the a priori uncertainty, the flux of the US would already be determined down
to an uncertainty of 0.17 Mt C/year, and not much is added by the network. In other
words, the number of stations needed to constrain the flux at a given resolution over
the whole continent is directly related to the reduction of uncertainty presented in the
maps of Fig. 8. With a very short a priori uncertainty correlation length scale, the
information gain only extends over small patches and reaches, apart from the next
proximity of the tower, less than 20%. The reduction of uncertainty is further modulated
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by the tracks of the air masses on their way to the tower. In the case presented here
these footprints were accumulated over a month, so if shorter periods are required,
the regions with information gain are limited to even fewer areas. On the other hand,
for very large scales, a single station is sufficient to constrain a large area, and the
exact location of the footprints is less important. So the dominant scale for determining
the network density is the scale over which the priori uncertainty in the parameters (or
in the fluxes, if one solves for fluxes) correlates; the scale of variations in the footprint
becomes important at shorter decorrelation scales. Similarly, the scale with which local
perturbations in the behavior of the biosphere can be resolved depends primarily on
the scale of prior error covariance, as plots similar to Fig. 10 but different /,,,,, indicate
(not shown).

It has to be mentioned that both, the a priori uncertainty S,,;,, as well as the mea-
surement error S, did not include temporal correlation. In general, the same basic
principles apply for these temporal correlations as for the investigated spatial corre-
lations, in that the interplay of averaging time scales, integrating time scales of the
atmosphere, and the differences in true and assumed temporal correlations can cause
biased results or loss of information. It is also important to note that all errors were
assumed Gaussian. When applying such a method to other trace gases, such as CO,
this assumption is not valid: the distribution of CO in the atmosphere is lognormal,
mostly caused by the interaction of atmospheric transport and the spatial pattern of
fluxes (dominated by emissions from localized sources with high population density).
In a similar numerical experiment designed to infer CO fluxes at high spatial resolu-
tion based on measurements at Harvard Forest and on a priori fluxes from emission
inventories (see GO3b), the assumption of a Gaussian a priori uncertainty (50% of the
emissions) led to significant negative emissions for localized areas with large a priori
emissions, even at larger length scales (/=100km). A similar problem has to be ex-
pected when including fossil fuel fluxes for CO, to the state vector. In these cases, a
lognormal distribution has to be assumed, and the optimization is not simply a matrix
inversion, but has to involve iterative searches, cf. Manning et al. (2003).
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The results strongly support that specifying the off diagonal elements of the covari-
ance matrices is crucial for Bayesian flux inversions. An incorrect length scale for the
spatial covariance of the a priori guess usually leads to either significant under- or over-
estimation of the posterior uncertainties. Underestimation of uncertainty is equivalent
to overly confident estimates, or biases in the retrievals. Overestimation of uncertainty
is equivalent to not using all available information, but instead regarding it as noise; in
this case the retrieval will not be biased, but less accurate. The basic underlying prin-
ciple is that when “defining” the off diagonal elements of prior covariance matrices not
in accordance with the factual behavior of the uncertainties, we change the information
contained in the prior. As shown in Fig. 11, underestimation of uncertainty occurs in
both cases, when using a too large or a too short length scale compared to the actual
scale.

It is important to remember that the spatial scales of the a priori uncertainty corre-
lation are closely related to scales of processes that are not included or not properly
represented in the flux model. Thus, as stated in the introduction, the ideal way to
define the prior uncertainty covariance matrix would be to investigate the spatial (and
temporal) correlations of the residuals between the a priori flux model and such mea-
surements that went into the flux model development, or in the case of a state vector
consisting of sensitivities to environmental drivers as presented here, to investigate the
spatial correlations of these sensitivities for a given class of vegetation. In this regard
it is of course helpful if these measurements (flux measurements, process studies) are
made in a spatial arrangement that would allow deriving spatial statistics properties
(e.g. fitting a variogram). If the datasets do not allow this, one has to adopt other ways
to derive the a priori uncertainty covariance matrix. The simplest option is to just as-
sume a certain spatial correlation, as has been done for some global scale inversions
cf. Peylin et al. (2001); the assumed correlation has to be tested however with respect
to its impact on the retrieval (at least the posterior uncertainty should not be under-
estimated). A step further is to derive the a priori uncertainty matrix from the spread
between different models (Rodenbeck et al., 2003); but one has to be aware of the fact
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that model to model differences don’t necessarily have to resemble residuals between
a given model and the truth, given that models often share a similar structure and in-
put data. The assumed correlation could also be based on knowledge of the spatial
scales of the processes not represented by the model, e.g. by comparing to a more
sophisticated model that includes more detailed processes.

It is also an option is to treat such a length scale as an unknown, and to optimize
not only for fluxes (or sensitivities to environmental drivers), but also for these length
scales. This was for example suggested by Michalak et al. (2004), who used a very
simple flux model (the only a priori information was that land and ocean have a different
flux), but solved for parameters describing the prior covariance model (a length scale
and a variance for land and ocean). However, whichever method is used to derive the
a priori uncertainty covariance matrix, it is important to ensure these assumptions are
conservative in that claimed uncertainties in derived fluxes (posterior estimates) are
not underestimating true uncertainties.

Obviously, there is no simple recipe that would allow defining a length scale /, in-
dependent of the true length scale /;,,,, such that the posterior uncertainty remains
conservative in the sense that the retrieval remains unbiased (estimated posterior un-
certainty not smaller than actual the actual uncertainty, see Fig. 11). A common di-
agnostic to assess whether the correct assumptions about uncertainties went into the
optimization is the reduced ,1/2, i.e. the cost function (weighted sum of squares) at the
optimum divided by the numbers of degrees of freedom. As expected, reduced ¥? val-
ues close to 1 are found for /=/;,,,, (Fig. 12, filled circles). For length scales / that are
very different from /;,,,, reduced ¥? values increase up to more than 4. This seems
to indicate that when including the lengthscale / in the state vector, there is a potential
for and be optimizing it in the retrieval. However, values of reduced ,1/2 around 1 are
also found for cases with length scales / that are very different from /;,,,, for exam-
ple for an assumed scale of /;,,,,=40km at /;,,,=15000km. Similarly, when plotting
the underestimation of uncertainty (i.e. the ratio of actual over assumed posterior un-
certainty) against the corresponding reduced ,1/2 values (Fig. 13), it becomes obvious
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that a reduced ,1/2 value of close to unity is a necessary, but not a sufficient sign for a
correct posterior uncertainty. Thus the reduced ,1/2 diagnostics can help to select the
appropriate prior uncertainty covariance, but it does not guarantee unbiased retrievals.
Therefore, we recommend investigating different possible combinations of true and as-
sumed length scales in order to assure that the final choice is a conservative one.

Next steps will be to use the ROAM framework in this formulation to quantitatively
merge top-down constrains from atmospheric observations with bottom-up constraints.
Therefore the simple flux model GSB will therefore be replaced by a more sophisticated
one such as the VPM (Vegetation Photosynthesis Model, Xiao et al., 2004), which will
result in significant improvements of the representation of spatial patterns in biosphere-
atmosphere exchange fluxes. Further, dominant transport model uncertainties such
as caused by inaccuracies in assimilated winds (Lin and Gerbig, 2005), but also as
caused by inappropriate vertical mixing within the boundary layer (inaccurate mixed
layer height, cf. GO3b) need to be (and will be) taken into account via error propaga-
tion; this will finally allow for reliable retrievals of regional scale biosphere-atmosphere
exchange fluxes.
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Table 1. Radiation and temperature sensitivity for biospheric fluxes and the associated un-
certainties, from fit to AmeriFlux data (after GO3b). The last column shows the correlation
coefficient between radiation and temperature sensitivity.
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Vegetation Ag o(Ag) Ay o(Ar) cor(Ag,Ar)
type
(simplified)

umol/m?2/s/(W/m?) umol/m?2/s/(W/m?) umol/m?/s/K umol/m?/s/K
Forest -0.018 0.013 0.14 0.11 -0.74
Cropland —-0.027 0.058 0.14 0.58 -0.72
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Fig. 1. Concentrations of CO, at the Harvard Forest tower compared to remote station and
aircraft data. Upper left: hourly CO, (ppm) at 30 m [grey dots], midday values [black circles],
10-day medians of the midday data [blue line], and 10-day medians from Bermuda East [or-
ange line] and Mauna Loa [red line]. Middle: difference (ppm) between midday Harvard For-
est concentrations and Bermuda E, color-coded by the sign of the CO, flux (green=uptake,
red=emission). Lower: 10-day median of the daily mean CO, flux at Harvard Forest (umole
m=2s”" ). Same as left, expanded time axis, with addition of data from 3 km altitude from aircraft
sampling over Harvard Forest [black line dotted]. (Bermuda, Mauna Loa, and aircraft data from
T. Conway, NOAA Climate Monitoring and Diagnostics Laboratory, 2004).
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Fig. 2. STILT derived footprint for the Harvard Forest Monitoring Site on 17 August 2002
at 15:00 GMT, for different times backwards and integrated over 3h (i.e. —12h denotes the
interval from 12 to 15 h prior to the release time). As the area of the footprint at a given time
increases, the dynamic resolution from STILT chooses coarser pixels to represent the footprint.
The footprints for different resolutions are rescaled to the finest resolution grid (1/6°latx 1/4°lon)

to avoid the trivial dependence on grid area.
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Fig. 3. Gridcell area vs. distance from the receptor location. The dynamic resolution from
STILT is shown as solid gray line (50%ile of influence) and dotted gray line (10%ile of influence).
The solid black line indicates the spatial resolution of the polar projection with 32 sectors and
30 radial segments, and the symbols . Note that the y-axis is not linear in area.
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Fig. 6. Monthly averaged footprint for Harvard Forest daytime (18:00 and 21:00 UT, top left)
and nighttime measurements (06:00 and 09:00 UT, top right), as well as vegetation coverage
(bottom). The map is centered around the Harvard Forest Monitoring Site with a radius of
1500 km. Note that the footprint maps are rescaled to a 20x20 km grid for comparability with
the cartesian grid and to avoid the trivial dependence on grid area.
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light sensitivity (controlling GEE), and bottom row for temperature (controlling R). The map is
centered around the Harvard Forest Monitoring Site with a radius of 1500 km.
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Fig. 10. Response of the retrieval in flux units (left: forest light sensitivity, right: forest temper-
ature sensitivity) to a local perturbation of the size of the a priori uncertainty in the parameter
field at the gridcell 50 km to the SW of Harvard Forest (top: perturbation in forest light sensitiv-
ity, bottom: perturbation in forest temperature sensitivity). Note the difference in scale between
top and bottom. 9287
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Fig. 11. Ratio of actual to estimated posterior uncertainty of flux average plotted against as-
sumed prior covariance scale /. The different lines correspond to different /;,,,.(used for cre-
ation of prior realizations), and points are plotted for /=/;,,,. The vertical bar indicates the
scale for flux averaging (516 km). Values >1 indicate that the retrieval produces an erroneous
underestimation of uncertainty in the posterior parameter values.
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Fig. 12. Reduced y? plotted against assumed prior covariance scale /. Grayscales and lines Interactive Discussion |

are similar to Fig. 11, with filled circles plotted for /=/,,,,.
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Fig. 13. Ratio of actual to estimated posterior uncertainty of flux average plotted against re-
duced y2. Grayscales and lines are similar to Fig. 11, and larger filled circles are plotted for
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